
Formal Verification Report of Radicle
Drips Contracts

Summary
This document describes the specification and verification of Radicle Drips Contracts using
the Certora Prover. The work was undertaken from 06 December 2022 to 01 January 2023.
The latest commit that was reviewed and run through the Certora Prover was 6fe9d38.

The scope of our verification was the Splits contract Splits.sol.

The Certora Prover proved the implementation of the contract above is correct with respect to
the formal rules written by the Certora team. The team also performed a manual audit of the
contract.

All the rules are publically available and can be found in Radicle’s public github.

Main Issues Discovered
Informational

Issue: A split receiver might be prevented from receiving tokens

Description: A split receiver’s part can be rounded down to zero, if split() is called upon a
splitter, when the splittable amount of the splitter x split receiver’s
weight / total splits weight is rounded down to zero. The one who will
benefit from the above is the splitter who will get the remainder to himself.

It is possible for a splitter to abuse the above, if he (or a pre-designed bot)
calls split() constantly without allowing for a substantial splittable amount to
be gathered and then split.

Response: - The splitting user can't choose how much they want to split. The funds come
from drips, splits and giving, all of which are barely controllable and certainly
not enough to pinch token after token.
- The splitting user's configuration is based on their good will anyway. They
can choose to update their configuration before splitting and just take all the
pending funds, not just a single token. The only risk is that they can be
frontrun by a bot splitting with their previous configuration, and of course

1

https://github.com/radicle-dev/drips-contracts/tree/6fe9d38a30765df6aa3e4078634a37aeabbceef1
https://github.com/radicle-dev/drips-contracts/blob/certora/certora/specs/Splits.spec


reputation, which is the main penalty here. When you drip, split or give to
somebody, you're basically letting them control the funds however they feel fit.
- There are very few tokens for which pinching tokens like this justifies the gas
expense required to perform an attack.
- There's really no good workaround, splitting 1 undividable token between 2
parties must leave one of them with a token and one without. An alternative
could be to either lock the disputed token, or keep track of who gained more,
but that'd be very complex and almost certainly unreliable.

Disclaimer
The Certora Prover takes a contract and a specification as input and formally proves that the
contract satisfies the specification in all scenarios. Importantly, the guarantees of the Certora
Prover are scoped to the provided specification, and the Certora Prover does not check any
cases not covered by the specification.

We hope that this information is useful but we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Assumptions and Simplifications Made During
Verification
We made the following assumptions during our verification:

● We unroll loops. Violations that require a loop to execute more than twice will not be
detected

● In some of the rules we assume that the weights of the split receivers are assigned
correctly, i.e. sum of all weights is less than _TOTAL_SPLITS_WEIGHT. This is a safe
assumption since the function _assertSplitsValid() verifies that in _setSplits()

● Since the rule cannotFrontRunSplitGeneral timed-out in the general case with no
assumptions on userA, userB and userC, we had to split the rule into different simpler
rules with specific assumptions for the users and then prove each rule on its own

● We assumed that the sum of balances and the amounts transferred are less than 2128

2



Notations
✅Indicates the rule is formally verified.
❌Indicates the rule is violated.
⏳Indicates the rule is timing out.

Verification of Splits.sol

Properties and Rules

✅ correctnessOfSplitResults
Calculate results of splitting an amount using the current splits configuration.
We verify that amount == collectableAmt + splitAmt

✅ correctnessOfSplit
Splits user's received but not split yet funds among receivers.
We verify that for the splitter:
splittableBefore >= splittableAfter
collectableBefore + collectableAmt == collectableAfter
splittableBefore + collectableBefore >= splittableAfter + collectableAfter

✅ integrityOfCollect
Collects user's received already split funds
We verify that after collection, no more collectable balance should be immediately available
collectableAfter == 0

✅ revertCharacteristicsOfCollect
We verify that calling the method collect() should never revert

✅ correctnessOfGive
The method give() gives amt amount of assetId funds from userId to receiver.
We verify that after giving amt to a receiver, the splittable of the receiver should increase exactly
by amt.

3



✅ splittableOfNonReceiverNotAffectedByGive
The method give() gives amt amount of assetId funds from userId to receiver.
We verify that the splittable of any other user that is not receiver should not change

✅ correctnessOfHashSplits
The method hashSplits() calculates the hash of the list of splits receivers.
We use a boolean selector to operate on two different lists of splits receivers.
We verify that two calculated hashes are the same only if they got exactly the same input.
We also verify that different inputs must generate different hashes.

✅ integrityOfSplit
We simulate the following scenario:
userA has received drips and has splittable > 0
userA has a list of splitters that should get some of the drips received
userA calls split()

Then we verify the following:
If userB is on the list of userA's splitters, therefore userB's splittable should NOT decrease
If userC is NOT on the list of userA's splitters, therefore userC's splittable should NOT change
userA's collectable should NOT decrease
userB and userC's collectable should NOT change

✅ assetsDoNotInterfereEachOther
We verify that operations over one assetId1 should not affect anything related to another
assetId2
We verify that calling split() on userA with assetId1 should NOT affect the splittable and
collectable for any user's assetId2

✅ moneyNotLostOrCreatedDuringSplit
Money is not lost or created in the system when split() is called.
We simulate the following scenario: userA has splittable balance and one splits receiver - userB,
then split() is called on userA.
We verify that the sum (splittable + collectable) of (userA + userB) are invariant of the split.

4



✅ sameReturnOfSplitAndSplitResults
We verify that splitResults() and split() return the same (collectableAmt, splitAmt)
We simulate the following scenario:
userA has splittable balance and configured two split receivers - userB, userC
First we call splitResults() upon userA with amount = splittable of userA, then we call
split() upon userA
We verify that the returned values of both functions are the same

❌ splitReceiverShouldGetMoneyUponSplit
We simulate the following scenario:
userA has splittable balance and one splits receiver - userB, then split() is called on userA
We verify that the splittable balance of userB will increase

The rule fails in cases when userB’s part, calculated as (splittable amount of userA x
userB’s weight / _TOTAL_SPLITS_WEIGHT) is rounded down to zero, therefore the receiver will
get nothing!

Possible abuse vector: split() is called every time when the splittable balance of userA is so
low, so that the rounding error will cause the splitReceiver userB to get zero. As a result userA
will get all the splittable to himself.

The one who will benefit from the abuse is the splitter, but he is also the one that in advance
decided who are going to be his splitReceivers.

✅ equalSplitWeightsResultEqualSplittableIncrease
Users with same weights should get same amount upon split()
We simulate the following scenario: userA has splittable balance and configured two split
receivers - userB, userC. Both userB and userC have the same split weights, then split() is
called on userA.
We verify that the splittable balances of userB and userC will increase by the same amount (up
to 1 unit)

⏳cannotFrontRunSplitGeneralCase
Front running split() does not affect the split receiver
We simulate the following scenario:
userA has a single splitReceiver userC
userB also has the same single splitReceiver UserC
we want to verify that split() can be called on userA successfully even if someone front runs it
and calls split() first on userB

5



This rule has no assumptions about userA, userB, userC and unfortunately the rule timed out.
In order to deal with the time out, we decided to verify the rule by dividing it into the following
simpler rules with explicit assumptions about the identity of the users. All the simpler rules were
verified successfully.

✅ cannotFrontRunSplitDifferentUsers
First we verify the case userA != userB != userC

✅ cannotFrontRunSplitTwoSameUsers
Next we verify the case userA != userB with appropriate require

✅ cannotFrontRunSplitThreeSameUsers
Finally we verify the edge case userA == userB == userC

6


