
Drips
Security Review

Cantina Managed review by:
Optimum, Lead Security Researcher
Phaze, Security Researcher
Windhustler, Associate Security Researcher

July 5, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Non-executable messages in BridgedGovernor can result in an unrecoverable state . 43.2 Medium Risk . 53.2.1 BridgedGovernor.lzReceive can be executed with different msg.value than intended 53.3 Low Risk . 63.3.1 WETH implementation might not have the fallback function on various L2s leading toreverts . 63.3.2 Giver clones could unexpectedly call empty code . 73.4 Informational . 73.4.1 ERC721 tokens are not recoverable from the Giver contract 7

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Drips is a protocol and app built on Ethereum that enables organizations and individuals to directly andpublicly provide funding to the free and open source software projects they depend on the most.
Drips also includes gas-optimized and integrated primitives for streaming and splitting tokens, allowingusers and web3 apps to stream and split funds by the second with continuous settlement for use caseslike contributor payments, vesting and subscription memberships.
From Jun 4th to Jun 24th the Cantina team conducted a review of contracts on commit hash 5f601b7f.The team identified a total of 5 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 1
• Medium Risk: 1
• Low Risk: 2
• Gas Optimizations: 0
• Informational: 1

3

https://github.com/drips-network/contracts
https://github.com/drips-network/contracts/tree/5f601b7fe3ed2d3756e87dc29219f960a9fd2bc1

3 Findings

3.1 High Risk
3.1.1 Non-executable messages in BridgedGovernor can result in an unrecoverable state

Severity: High Risk
Context: BridgedGovernor.sol#L57-L71
Description: If a non-executablemessage is relayed, BridgedGovernormay end up in an irreparable statedue to the strict enforcement of sequential nonces.
The function used for receiving Layer Zero relayed messages (BridgedGovernor.lzReceive) strictly en-forces sequential nonces. While this requirement is desired, it also introduces additional challenges andconsiderations if there are no alternative recovery mechanisms in place. If a relayed message is not ex-ecutable on the receiving end, it is possible for BridgedGovernor to be unable to execute any furthermessages.
Messages can become undeliverable if they are malformed or if they contain non-executable sub calls. Asimplified (and incomplete) example showcases the scenario:
pragma solidity ^0.8.20;

import {Test} from "forge-std/Test.sol";

import "src/BridgedGovernor.sol";

contract BridgedGovernorTest is Test {

BridgedGovernor bridgedGovernor;

address endpoint = address(bytes20(keccak256("endpoint")));

uint32 ownerEid = 123;

bytes32 owner = keccak256("owner");

uint64 nonce = 1;

function setUp() public {

BridgedGovernor bridgedGovernorLogic = new BridgedGovernor(endpoint, ownerEid, owner);

bridgedGovernor = BridgedGovernor(

address(new BridgedGovernorProxy(address(bridgedGovernorLogic), new Call[](0)))

);

}

function testMalformedCall() public {

Origin memory origin = Origin(ownerEid, owner, nonce);

bytes32 guid;

// bytes memory message = abi.encode(new Call[](0)); // ok message

bytes memory message = hex"deadbeef"; // malformed message

address executor = address(this);

bytes memory extraData;

// this call cannot be executed

vm.prank(endpoint);

bridgedGovernor.lzReceive(origin, guid, message, executor, extraData);

}

}

Since sequential messages are enforced and BridgedGovernor can only be upgraded through a call-to-selffrom a layer zero relayed message, it would not be able to upgrade its implementation to issue a fix.
Recommendation: Consider allowing the execution of messages with unordered nonces. An additionalapplication level nonce can be introduced for additional guard rails when sending messages

4

https://github.com/drips-network/contracts/blob/5f601b7fe3ed2d3756e87dc29219f960a9fd2bc1/src/BridgedGovernor.sol#L57-L71

function nextNonce(uint32 srcEid, bytes32 sender)

public

view

onlyProxy

returns (uint64 nextNonce_)

{

- if (srcEid == ownerEid && sender == owner) nextNonce_ = _lastNonce + 1;

+ // enable unordered nonces on LZ

+ nextNonce_ = 0;

}

function lzReceive(

Origin calldata origin,

bytes32, /* guid */

bytes calldata message,

address, /* executor */

bytes calldata /* extraData */

) public payable onlyProxy {

require(msg.sender == endpoint, "Must be called by the endpoint");

require(origin.srcEid == ownerEid, "Invalid message source chain");

require(origin.sender == owner, "Invalid message sender");

- require(origin.nonce == _lastNonce + 1, "Invalid message nonce");

+ // `appNonce` is encoded alongside the message

+ require(message.length >= 64, "Message too short");

+ (uint64 appNonce, Call[] memory calls) = abi.decode(message, (uint64, Call[]));

+ require(appNonce == _lastNonce + 1, "Invalid message nonce");

// slither-disable-next-line events-maths

- _lastNonce = origin.nonce;

- runCalls(abi.decode(message, (Call[])));

+ _lastNonce = appNonce;

+ runCalls(calls);

}

Drips: Fixed in commit 6a7b6c6a by implementing the auditor's recommendation.
Cantina Managed: Fixed.
3.2 Medium Risk
3.2.1 BridgedGovernor.lzReceive can be executed with different msg.value than intended

Severity: Medium Risk
Context: BridgedGovernor.sol#L57-L71
Description: BridgedGovernor.lzReceive logic doesn't check the address of the executor.
// BridgedGovernor.sol

function lzReceive(

Origin calldata origin,

bytes32, /* guid */

bytes calldata message,

address, /* executor */

bytes calldata /* extraData */

) public payable onlyProxy {

require(msg.sender == endpoint, "Must be called by the endpoint");

require(origin.srcEid == ownerEid, "Invalid message source chain");

require(origin.sender == owner, "Invalid message sender");

require(origin.nonce == _lastNonce + 1, "Invalid message nonce");

// slither-disable-next-line events-maths

_lastNonce = origin.nonce;

runCalls(abi.decode(message, (Call[])));

}

EndpointV2.lzReceive does not have access control and is freely callable by anyone once the messagegets verified.
Thismeans that amalicious actor can front-run the Executor and call lzReceivewith a different msg.valuethan the sender has paid for. In certain scenarios depending on the encodedmessage data, this can resultin a successful message being delivered but with a state update different than intended.

5

https://github.com/drips-network/contracts/tree/6a7b6c6ad1a640c8264bbf2446673dfd6d8bf003
https://github.com/drips-network/contracts/blob/5f601b7fe3ed2d3756e87dc29219f960a9fd2bc1/src/BridgedGovernor.sol#L57-L71
https://github.com/LayerZero-Labs/LayerZero-v2/blob/main/packages/layerzero-v2/evm/protocol/contracts/EndpointV2.sol#L172-L183

Impact: Medium/High as it can result in loss of tokens that were used to pay executor options on thesending chain and state update in one of the external calls different than intended.
Likelihood: Low as msg.value is checked for each external call.
Recommendation: Encode the msg.value inside the message on the sending chain, decode it in the
lzReceive and compare it with the actual msg.value.
- runCalls(abi.decode(message, (Call[])));

+ (uint256 msgValue, Call[] memory calls) = abi.decode(message, (uint256, Call[]));

+ require(msg.value >= msgValue, "Invalid message value");

+ runCalls(calls);

}

Drips: Fixed in commit 6a7b6c6a by implementing the auditor's recommendation.
Cantina Managed: Fixed.
3.3 Low Risk
3.3.1 WETH implementationmight not have the fallback function on various L2s leading to reverts

Severity: Low Risk
Context: Giver.sol#L137-L139
Description: GiverRegistry is initialized with the address of the WETH on the chain it's deployed on. It'sdone so if you're giving native tokens they are first wrapped in WETH and only then WETH get transferred.Wrapping into WETH is done by calling its fallback function.
WETH deployed on Ethereum has the following implementation:
// WETH.sol

function() public payable {

deposit();

}

function deposit() public payable {

balanceOf[msg.sender] += msg.value;

Deposit(msg.sender, msg.value);

}

Calling the fallback function deposits native tokens into the WETH contract and mints the WETH tokens tothe msg.sender. This is the intended behavior and fits within the giving logic.
As the team intends to deploy the GiverRegistry contract on L2s, it's important to confirm the WETH im-plementation is in line with the above-described behavior.
Moreover, the native token wrapper address should be passed as a constructor argument.
Recommendation: Pass the native token wrapper address as a constructor parameter and make surethe fallback function behavior is as expected.
Drips: Fixed in commit 0937f617 by implementing the auditor's recommendation.
Cantina Managed: Fixed.

6

https://github.com/drips-network/contracts/tree/6a7b6c6ad1a640c8264bbf2446673dfd6d8bf003
https://github.com/drips-network/contracts/blob/5f601b7fe3ed2d3756e87dc29219f960a9fd2bc1/src/Giver.sol#L137-L139
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code
https://github.com/drips-network/contracts/commit/0937f6170d5fe266b8cd7bf620165e45c91dc8a2

3.3.2 Giver clones could unexpectedly call empty code

Severity: Low Risk
Context: Giver.sol#L95-L120
Description: A Giver clonemay unexpectedly perform no operations in the case that the GiversRegistryis not initialized.
When GiversRegistry.give is called, an EIP-1167minimal proxy clone is created. The clone's implementa-tion contract points to a precomputed address which is the first contract deployed by GiversRegistry-the
Giver contract. The Giver contract is deployed as a singleton contract when GiversRegistry.initializeis called. However, since the implementation contract address is computed deterministically, there is apossibility that the clone could point to an address that does not contain any code if Giver is not initialized.
The consequence of this is that calling GiversRegistry.givewill result in the clone doing nothing, as it willperform a delegatecall into a contract address without any code. A call to an address without code willreturn true as the call's success status. This scenario could confuse users, as they might see a successfultransaction without the desired effect of the clone transferring the tokens to the AddressDriver contract.
The impact is minimized because anyone can call GiversRegistry.initialize, which would deploy the
Giver implementation contract at the correct address and enable the Giver clones to function properly.
Recommendation: Check the existence of contract and deploy Giver implementation if necessary orenforce an off-chain initialization check before GiversRegistry.give is called.
Drips: Fixed in commit 0d412126 by initializing a Giver contract inside the give function in case it doesnot exist.
Cantina Managed: Fixed.
3.4 Informational
3.4.1 ERC721 tokens are not recoverable from the Giver contract

Severity: Informational
Context: Giver.sol#L131-L150
Description: The Giver contract is located at a precomputed address based on an account ID. Users cansend ERC20 tokens directly to this address, ensuring that the funds are correctly attributed and recover-able by the associated account ID.
However, if a user accidentally sends an ERC721 token to the Giver address, it may not be recoverable.Although ERC721 and ERC20 tokens have similar interfaces, calling GiversRegistry.giveImpl with anERC721 token address and token ID instead of an ERC20 token address and amount is unlikely to pass thebalance check located in GiversRegistry.giveImpl. Even if the call were to succeed, the ERC721 tokenwould be sent to the Drips contract as a "Splits balance" as a result.
Recommendation: Consider implementing recovery paths for ERC721 tokens accidentally sent to the
Giver contract. The GiversRegistry could include functionality to transfer ERC721 tokens to a DAO. Alter-natively, the GiversRegistry could be upgraded to include this functionality if necessary.
Drips: Acknowledged, as of now won't fix.
Cantina Managed: Acknowledged.

7

https://github.com/drips-network/contracts/blob/3d235fa32c67e8cd32032df4167bc238fe9eabfe/src/Giver.sol#L95-L120
https://github.com/drips-network/contracts/commit/0d412126624874f95d396d529c81c9b944f88de2
https://github.com/drips-network/contracts/blob/3d235fa32c67e8cd32032df4167bc238fe9eabfe/src/Giver.sol#L131-L150

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Non-executable messages in BridgedGovernor can result in an unrecoverable state

	Medium Risk
	BridgedGovernor.lzReceive can be executed with different msg.value than intended

	Low Risk
	WETH implementation might not have the fallback function on various L2s leading to reverts
	Giver clones could unexpectedly call empty code

	Informational
	ERC721 tokens are not recoverable from the Giver contract

