
DripsSecurity Review

Cantina Managed review by:
Deadrosesxyz, Lead Security Researcher
Sujith somraaj, Security Researcher
J4x, Associate Security Researcher

September 4, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 Medium Risk . 43.1.1 commonFunds can be burned by anyone . 43.2 Low Risk . 43.2.1 All repo's ownership can be removed if Github/Gitlab goes down for 5 seconds 43.3 Gas Optimization . 53.3.1 withdrawUserFunds could be optimized to avoid unnecessary function call 53.3.2 _cancelAllGelatoTasks function could be optimized . 63.4 Informational . 63.4.1 Do not add Multicall to future versions of RepoDriver 63.4.2 Replace magic numbers with named constants to improve code quality 7

1

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary
Drips is a protocol and app built on Ethereum that enables organizations and individuals to directly andpublicly provide funding to the free and open source software projects they depend on the most.
Drips also includes gas-optimized and integrated primitives for streaming and splitting tokens, allowingusers and web3 apps to stream and split funds by the second with continuous settlement for use caseslike contributor payments, vesting and subscription memberships.
From Jul 23rd to Jul 26th the Cantina team conducted a review of drips-monorepo on commit hash78ce9efb. The team identified a total of 6 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 1
• Low Risk: 1
• Gas Optimizations: 2
• Informational: 2

3

https://github.com/cantina-forks/drips-monorepo
https://github.com/cantina-forks/drips-monorepo/tree/78ce9efb8bfebcc535c9012a8ab62ec793da4e43/

3 Findings
3.1 Medium Risk
3.1.1 commonFunds can be burned by anyone
Severity: Medium Risk
Context: RepoDriver.sol#L309-L325
Description: The Drips protocol allows users to request updates to the ownership of a repo through the
requestUpdateOwner() function. This will trigger a call through Gelato, which will result in a fee beingcharged to the contract. This fee can be paid from two different sources:
1. The users' deposited funds.
2. The commonFunds.

The protocol will first use the users deposited funds, and if there are none, the common funds are used.
if (userFundsUsed >= amount) {

userFundsUsed = amount;

} else {

require(commonFunds() >= amount - userFundsUsed, "Not enough funds");

}

if (userFundsUsed != 0) {

_gelatoStorage().userFunds[payer] -= userFundsUsed;

_gelatoStorage().userFundsTotal -= userFundsUsed;

}

Address.sendValue(gelatoFeeCollector, amount);

The problem is that there is no restriction on requesting these callbacks from Gelato. So a malicious usercould generate countless callbacks which would drain the whole commonFundswithout any guards in placeto stop him,
Recommendation: We recommend only allowing updates through trusted identity (e.g. a whitelist) toprevent malicious actors from burning the commonFunds every time new ones get deposited.
Drips: Acknowledged. This is the intended behavior, we want to subsidize user calls. When the commonfunds run out, the users can still use the protocol, it just won't be subsidized anymore. The recommenda-tion introduces a trusted identity which is against the trustless design of the protocol and brings securityrisks around maintenance of the whitelist.
Cantina Managed: Acknowledged.
3.2 Low Risk
3.2.1 All repo's ownership can be removed if Github/Gitlab goes down for 5 seconds
Severity: Low Risk
Context: index.ts#L69
Description: The Drips protocol uses an asynchronous Gelato task to update repos ownership. Users willcall the RepoDriver contract to emit an OwnerUpdateRequested event. Based on this task, the gelato taskwill trigger, and the set typescript file will be run. In this file, the code generates a URL for the path to therepos Funding.json file and tries to retrieve the raw file from Github/Gitlab.

4

https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L309-L325
https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts-gelato-web3-function/web3-functions/repo-driver-oracle/index.ts#L69

try {

repoName = toUtf8String(name);

let url: string;

switch(forge) {

case 0:

url = `https://raw.githubusercontent.com/${repoName}/HEAD/FUNDING.json`;

break;

case 1:

url = `https://gitlab.com/${repoName}/-/raw/HEAD/FUNDING.json`;

break;

default:

throw Error(`Unknown forge ${forge}`);

}

const funding: any = await ky.get(url, { timeout: 25_000, retry: 10 }).json();

owner = getAddress(funding.drips[chain].ownedBy);

} catch (error_) {

error = error_;

}

As one can see, the code will try to be retrieved ten times fromGithub/Gitlab with a timeout of 25 seconds.This timeoutwill never trigger, as the call will already fail after 5 seconds based on the framework. If Githubstays down longer than that, the call will fail, and the catch block will continue. The problem is that thefunction call to updateOwnerByGelato() will still be made in this case:
if(error) console.log("Error:", error)

return { canExec: true, callData: [functionCall] };

This function call will use the never overwritten default value for owner, which gets set before.
let owner = AddressZero;

This allows an attacker to wait until Github/Gitlab has an outage and then quickly calls the requestUp-

dateOwner() function for any repo he wants. This repo's ownership will then be overwritten with the
address(0), and the owner will only be able to reclaim ownership once he realizes this and Github is backup.
Recommendation: We recommend not calling the contract if the try/catch block returns an error. Thisway, the old assignment will persist.
Drips: Acknowledged, won't fix. The current behavior of not assuming ownership unless it can be actuallylooked up is a safety measure. When the user needs to quickly update the ownership, e.g. becausetheir wallet was compromised, a GitHub/GitLab outage shouldn't slow down cutting off the attacker. An
address(0) ownership can be easily fixed when the service gets restored, but stolen funds can't.
Cantina Managed: Acknowledged.
3.3 Gas Optimization
3.3.1 withdrawUserFunds could be optimized to avoid unnecessary function call
Severity: Gas Optimization
Context: RepoDriver.sol#L362
Description: In the withdrawUserFunds function, we can reduce gas consumption by directly accessingthe storage variable instead of calling the userFunds function. This will reduce gas consumption by at least20 GAS in all possible paths.
Recommendation: Replace the userFunds(user) function call with direct access to the storage variable:

5

https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L362

function withdrawUserFunds(uint256 amount, address payable receiver)

public

whenNotPaused

returns (uint256 withdrawnAmount)

{

address user = _msgSender();

uint256 maxAmount = _gelatoStorage().userFunds[user];

// ... rest of the function

}

Drips: Acknowledged, won't fix. This is almost certainly an inlining bug or deficiency in the optimizer, iteither is or probably will be fixed in the newer Solidity versions, especially with via-IR. I don't think that 20gas per call is worth the slightly decreased readability and less DRY code.
Cantina Managed: Acknowledged.
3.3.2 _cancelAllGelatoTasks function could be optimized
Severity: Gas Optimization
Context: RepoDriver.sol#L224
Description: The _cancelAllGelatoTasks internal function cancels all pending tasks before creating anew one. This admin-only function doesn't cache the loop length and uses i++ instead of ++i, which cansave gas costs.
Recommendation: Consider optimizing the function as recommended below,

function _cancelAllGelatoTasks() internal {

// `IAutomate` interface doesn't cover `getTaskIdsByUser.`

bytes32[] memory tasks = IAutomate2(address(gelatoAutomate)).getTaskIdsByUser(address(this));

uint256 len = tasks.length;

for (uint256 i; i < len; ++i) {

gelatoAutomate.cancelTask(tasks[i]);

}

}

This optimization reduced the gas costs from 195418 GAS to 195402 GAS for two cancellations and willexponentially reduce more if the length is considerable.
Drips: Acknowledged, won't fix. The recommended code is more verbose and this optimization is alreadydone automatically in the newer version of Solidity with via-IR. The saving of 16 gas (0,0082% or about0,067$ on Ethereum and a few orders of magnitude less on L2s) in a function that will be run a few timesin the entire protocol lifetime isn't worth it.
Cantina Managed: Acknowledged.
3.4 Informational
3.4.1 Do not add Multicall to future versions of RepoDriver
Severity: Informational
Context: RepoDriver.sol#L29
Description: It must be noted that the current version of RepoDriver is incompatible with Multicall. If
Multicall is ever added to the contract the following issues will occur:

• Attacker will be able to impersonate calls from other users due to the usage of ERC2771Context.
• Attacker will be able to inflate their balance (and later withdraw it) by multicalling deposit, whichuses the msg.value.

Recommendation: A fix is not needed. Protocol should simply be aware to not add Multicall to futureversions of the protocol
Drips: Acknowledged. We aren't planning switching Caller to Multicall.

6

https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L224
https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L29

Cantina Managed: Acknowledged.
3.4.2 Replace magic numbers with named constants to improve code quality
Severity: Informational
Context: RepoDriver.sol#L159, RepoDriver.sol#L184, RepoDriver.sol#L189
Description: The RepoDriver contract contains several instances of magic numbers - literal values useddirectly in the code without explanation. These magic numbers reduce code readability and make main-tenance more difficult. Replacing these with named constants would improve code quality.
function calcAccountId(Forge forge, bytes calldata name)

public

view

returns (uint256 accountId){

// ...

if (name.length <= 27) {

// ...

}

// ...

accountId = (accountId << 8) | forgeId;

// ...

accountId = (accountId << 216) | nameEncoded;

}

Recommendation: Identify all magic numbers in the contract and declare them as named constant withdescriptive names.
uint8 private constant MAX_NAME_LENGTH = 27;

uint8 private constant FORGE_ID_BITS = 8;

uint16 private constant NAME_ENCODED_BITS = 216;

function calcAccountId(Forge forge, bytes calldata name)

public

view

returns (uint256 accountId){

// ...

if (name.length <= MAX_NAME_LENGTH) {

// ...

}

// ...

accountId = (accountId << FORGE_ID_BITS) | forgeId;

// ...

accountId = (accountId << NAME_ENCODED_BITS) | nameEncoded;

}

Drips: Acknowledged. I disagree that turning these magic numbers into constants would improve thecode quality. I tried it before and it resulted in code that was more difficult to read and reason about. Inthe current code the magic numbers are highly local, they are always used once, they are documentedwith comments, and it's immediately clear what their values are. Introducing constants would move awaythese values from their context, their documentation would need to be verbose because it would needto be readable in isolation, and it wouldn't be immediately clear where exactly these numbers are usedin code, but it wouldn't make the code more DRY because they would be used only once anyway.
MAX_NAME_LENGTH probably should be split into MAX_NAME_LENGTH_GITHUB and MAX_NAME_LENGTH_GITLAB be-cause these forges have entirely independent ID spaces, the magic number 27 repeats by coincidence,not by design.
Cantina Managed: Acknowledged.

7

https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L159
https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L184
https://cantina.xyz/code/15f1ac2d-2acc-423e-9426-a1333ec40f10/contracts/src/RepoDriver.sol#L189

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	commonFunds can be burned by anyone

	Low Risk
	All repo's ownership can be removed if Github/Gitlab goes down for 5 seconds

	Gas Optimization
	withdrawUserFunds could be optimized to avoid unnecessary function call
	_cancelAllGelatoTasks function could be optimized

	Informational
	Do not add Multicall to future versions of RepoDriver
	Replace magic numbers with named constants to improve code quality

